Often times, order is abbreviated with a capital O: for instance, O(n^2). This notation, known as big-O notation, is a typical way of describing algorithmic efficiency; note that big-O notation typically does not call for inclusion of constants. Also, if you are determining the order of an algorithm and the order turns out to be the sum of several terms, you will typically express the efficiency as only the term with the highest order. For instance, if you have an algorithm with efficiency n^2 + n, then it is an algorithm of order O(n^2).
No comments:
Post a Comment